Trigonometric Identities

Color-Coded with Interactive Derivations

Reciprocal Identities

tanx = sinx cosx
Derivation:

By definition, tan x = opposite/adjacent in a right triangle.

Since sin x = opposite/hypotenuse and cos x = adjacent/hypotenuse,

tan x = (opposite/hypotenuse) / (adjacent/hypotenuse) = opposite/adjacent = sin x / cos x

cotx = cosx sinx
Derivation:

cot x is the reciprocal of tan x.

Since tan x = sin x / cos x,

cot x = 1 / tan x = 1 / (sin x / cos x) = cos x / sin x

secx = 1 cosx
Derivation:

By definition, sec x is the reciprocal of cos x.

In a right triangle, cos x = adjacent/hypotenuse,

so sec x = hypotenuse/adjacent = 1 / cos x

cscx = 1 sinx
Derivation:

By definition, csc x is the reciprocal of sin x.

In a right triangle, sin x = opposite/hypotenuse,

so csc x = hypotenuse/opposite = 1 / sin x

Pythagorean Identities

sin²x + cos²x = 1
Derivation:

From the Pythagorean theorem in a unit circle:

For any point (cos x, sin x) on the unit circle,

(cos x)² + (sin x)² = 1 (since radius = 1)

Thus, sin²x + cos²x = 1

csc²x - cot²x = 1
Derivation from sin²x + cos²x = 1:

Start with sin²x + cos²x = 1

Divide both sides by sin²x:

(sin²x/sin²x) + (cos²x/sin²x) = 1/sin²x

1 + cot²x = csc²x

Rearrange: csc²x - cot²x = 1

sec²x - tan²x = 1
Derivation from sin²x + cos²x = 1:

Start with sin²x + cos²x = 1

Divide both sides by cos²x:

(sin²x/cos²x) + (cos²x/cos²x) = 1/cos²x

tan²x + 1 = sec²x

Rearrange: sec²x - tan²x = 1

Power-Reducing Formulas

cos²x = 1 2 ( 1 + cos2x )
Derivation from cos(2x) formulas:

Start with cos(2x) = 2cos²x - 1

Solve for cos²x:

2cos²x = 1 + cos(2x)

cos²x = (1 + cos(2x)) / 2

sin²x = 1 2 ( 1 - cos2x )
Derivation from cos(2x) formulas:

Start with cos(2x) = 1 - 2sin²x

Solve for sin²x:

2sin²x = 1 - cos(2x)

sin²x = (1 - cos(2x)) / 2

Double Angle Formulas

sin2x = 2 sinx cosx
Derivation from angle addition formula:

Using sin(A+B) = sinA cosB + cosA sinB

Set A = x and B = x:

sin(x+x) = sinx cosx + cosx sinx

sin(2x) = 2 sinx cosx

cos2x variations:
cos2x = cos²x - sin²x
Derivation from angle addition formula:

Using cos(A+B) = cosA cosB - sinA sinB

Set A = x and B = x:

cos(x+x) = cosx cosx - sinx sinx

cos(2x) = cos²x - sin²x

cos2x = 1 - 2 sin²x
Derivation from cos²x - sin²x:

Start with cos(2x) = cos²x - sin²x

Replace cos²x with (1 - sin²x) from sin²x + cos²x = 1:

cos(2x) = (1 - sin²x) - sin²x

cos(2x) = 1 - 2sin²x

cos2x = 2 cos²x - 1
Derivation from cos²x - sin²x:

Start with cos(2x) = cos²x - sin²x

Replace sin²x with (1 - cos²x) from sin²x + cos²x = 1:

cos(2x) = cos²x - (1 - cos²x)

cos(2x) = cos²x - 1 + cos²x

cos(2x) = 2cos²x - 1

Derivative Relationships

sinx cosx
cosx -sinx
tanx sec²x
cotx -csc²x
secx secxtanx
cscx -cscxcotx
sin
cos
tan
csc
sec
cot
numbers/variables
operators/brackets
👁️ Total Visitors: 0

Made by @Theiraqies | Telegram Channel